Real linear quaternionic differential operators
نویسندگان
چکیده
منابع مشابه
Real-linear Operators on Quaternionic Hilbert Space
The main result is that any continuous real-linear operator A on a quaternionic Hubert space has a unique decomposition A=A0+iiAl + izAi+iiA3, where the A„ are continuous linear operators and (fi,f2,'3) is any right-handed orthonormal triad of vector quaternions. Other results concern the place of the colinear and complex-linear operators in this characterisation and the effect on the Av of a r...
متن کاملShannon wavelet approximations of linear differential operators
Recent works emphasized the interest of numerical solution of PDE’s with wavelets. In their works [3, 4], A. Cohen, W. Dahmen and R. DeVore focussed on the non linear approximation aspect of the wavelet approximation of PDE’s to prove the relevance of such methods. In order to extend these results, we focuss on the convergence of the iterative algorithm, and we consider different possibilities ...
متن کاملLinear Differential Operators for Polynomial Equations
The results of this paper spring from the elementary fact that an algebraic function satisfies a linear differential equation. Let k0 be a number field and k0 be its algebraic closure. Let P ∈ k0(x)[y] be a squarefree polynomial of degree n in y. The derivation δ = d dx extends uniquely to the algebraic closure k0(x) of k0(x). We define the minimal operator associated with P to be the monic dif...
متن کاملLinear differential operators on contact manifolds
We consider differential operators between sections of arbitrary powers of the determinant line bundle over a contact manifold. We extend the standard notions of the Heisenberg calculus: noncommutative symbolic calculus, the principal symbol, and the contact order to such differential operators. Our first main result is an intrinsically defined “subsymbol” of a differential operator, which is a...
متن کاملLinear perturbations of quaternionic metrics II. The quaternionic-Kähler case
We extend the twistor methods developed in our earlier work on linear deformations of hyperkähler manifolds [1] to the case of quaternionic-Kähler manifolds. Via Swann’s construction, deformations of a 4d-dimensional quaternionic-Kähler manifold M are in one-to-one correspondence with deformations of its 4d+ 4-dimensional hyperkähler cone S. The latter can be encoded in variations of the comple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2004
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2004.03.010